193 research outputs found

    A Novel Platelet Activating Factor Receptor Antagonist Reduces Cell Infiltration and Expression of Inflammatory Mediators in Mice Exposed to Desiccating Conditions after PRK

    Get PDF
    Purpose. To study the contribution of a novel PAF receptor antagonist LAU-0901 in the modulation of the increased inflammatory response in mice exposed to dessicating conditions (DE) after PRK. Methods. Eighty 13-14 week old female Balb/C mice were used. They were divided into two groups: One group was treated with LAU-0901 topical drops. The other group was treated with vehicle. In each group ten mice served as controls and ten were placed in DE. The other twenty mice underwent bilateral PRK and were divided in two additional groups: ten mice remained under normal conditions (NC) and the other ten were exposed to DE. After 1 week all animals underwent in vivo confocal microscopy, immunostaining and western blotting analysis. Results. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-090). Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Discussion: Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE

    LAU-0901, a novel platelet-activating factor receptor antagonist, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat

    Get PDF
    LAU-0901, a novel platelet-activating factor (PAF) receptor antagonist, is highly neuroprotective in a rodent model of cerebral ischemia. This study was conducted to establish whether the neuroprotection induced by LAU-0901 persists with chronic survival. Male Sprague–Dawley rats were anesthetized with isoflurane and subjected to 2 h of temporary middle cerebral artery occlusion (MCAo) induced by means of a poly-l-lisine-coated intraluminal nylon suture. Animals were treated with either LAU-0901 (60 mg/kg) or vehicle (45% cyclodextran) administered i.p. at 2 h from onset of MCAo. They received neurobehavioral examinations during MCAo (60 min) and then at 1, 2, 3, 7, 14, 21 and 28 days followed by histopathology at 30 days. LAU-0901 significantly improved the behavior compared to the vehicle group, beginning on day 1 (by 29%, p = 0.00007) and persisting throughout a 30-day survival period (42%, p = 0.0001). Compared with vehicle treatment, LAU-0901 treatment significantly increased volume of non-infarcted brain tissue loss relative to the unlesioned hemisphere (16.3 ± 4.6% vs. 46.0 ± 10.3%, respectively). These results establish that LAU-0901 confers enduring ischemic neuroprotection.NIH Grant NS023002 (NGB

    Multiprong control of glioblastoma multiforme invasiveness: blockade of pro-inflammatory signaling, anti-angiogenesis, and homeostasis restoration

    Get PDF
    Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the tumor’s location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. However, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most GBM clinical trials focus on “anti-angiogenic” modalities, stimulating inflammation resolution is a novel host-centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifically angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives to contain GBM growth and invasiveness.Fil: Bazan, Nicolas G.. State University of Louisiana; Estados UnidosFil: Reid, Madigan M.. State University of Louisiana; Estados UnidosFil: Cruz Flores, Valerie A.. State University of Louisiana; Estados UnidosFil: Gallo, Juan Eduardo Maria. Universidad Austral. Facultad de Ciencias BiomĂ©dicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Lewis, William. State University of Louisiana; Estados UnidosFil: Belayev, Ludmila. State University of Louisiana; Estados Unido

    Fatty acid transport protein 4 (FATP4) prevents light-induced degeneration of cone and rod photoreceptors by inhibiting RPE65 isomerase

    Get PDF
    Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage

    Docosahexaenoic Acid Therapy of Experimental Ischemic Stroke

    Get PDF
    We examined the neuroprotective efficacy of docosahexaenoic acid (DHA), an omega-3 essential fatty acid family member, in acute ischemic stroke; studied the therapeutic window; and investigated whether DHA administration after an ischemic stroke is able to salvage the penumbra. In each series described below, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo). In series 1, DHA or saline was administered i.v. at 3, 4, 5, or 6 h after stroke. In series 2, MRI was conducted on days 1, 3 and 7. In series 3, DHA or saline was administered at 3 h, and lipidomic analysis was conducted on day 3. Treatment with DHA significantly improved behavior and reduced total infarct volume by a mean of 40% when administered at 3 h, by 66% at 4 h, and by 59% at 5 h. Total lesion volumes computed from T2-weighted images were reduced in the DHA group at all time points. Lipidomic analysis showed that DHA treatment potentiates neuroprotectin D1 (NPD1) synthesis in the penumbra 3 days after MCAo. DHA administration provides neurobehavioral recovery, reduces brain infarction and edema, and activates NPD1 synthesis in the penumbra when administered up to 5 h after focal cerebral ischemia in rats

    Endogenous Signaling by Omega-3 Docosahexaenoic Acid-derived Mediators Sustains Homeostatic Synaptic and Circuitry Integrity

    Get PDF
    The harmony and function of the complex brain circuits and synapses are sustained mainly by excitatory and inhibitory neurotransmission, neurotrophins, gene regulation, and factors, many of which are incompletely understood. A common feature of brain circuit components, such as dendrites, synaptic membranes, and other membranes of the nervous system, is that they are richly endowed in docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family. DHA is avidly retained and concentrated in the nervous system and known to play a role in neuroprotection, memory, and vision. Only recently has it become apparent why the surprisingly rapid increases in free (unesterified) DHA pool size take place at the onset of seizures or brain injury. This phenomenon began to be clarified by the discovery of neuroprotectin D1 (NPD1), the first-uncovered bioactive docosanoid formed from free DHA through 15-lipoxygenase-1 (15-LOX-1). NPD1 synthesis includes, as agonists, oxidative stress and neurotrophins. The evolving concept is that DHA-derived docosanoids set in motion endogenous signaling to sustain homeostatic synaptic and circuit integrity. NPD1 is anti-inflammatory, displays inflammatory resolving activities, and induces cell survival, which is in contrast to the pro-inflammatory actions of the many of omega-6 fatty acid family members. We highlight here studies relevant to the ability of DHA to sustain neuronal function and protect synapses and circuits in the context of DHA signalolipidomics. DHA signalolipidomics comprises the integration of the cellular/tissue mechanism of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains containing DHA phospholipids, and the precise cellular and molecular events revealed by the uncovering of signaling pathways regulated by docosanoids endowed with prohomeostatic and cell survival bioactivity. Therefore, this approach offers emerging targets for prevention, pharmaceutical intervention, and clinical translation involving DHA-mediated signaling

    Microtubule-Associated Protein 1 Light Chain 3B, (LC3B) is Necessary to Maintain Lipid-Mediated Homeostasis in the Retinal Pigment Epithelium

    Get PDF
    Like other neurons, retinal cells utilize autophagic pathways to maintain cell homeostasis. The mammalian retina relies on heterophagy and selective autophagy to efficiently degrade and metabolize ingested lipids with disruption in autophagy associated degradation contributing to age related retinal disorders. The retinal pigment epithelium (RPE) supports photoreceptor cell renewal by daily phagocytosis of shed photoreceptor outer segments (OS). The daily ingestion of these lipid-rich OS imposes a constant degradative burden on these terminally differentiated cells. These cells rely on Microtubule-Associated Protein 1 Light Chain 3 (LC3) family of proteins for phagocytic clearance of the ingested OS. The LC3 family comprises of three highly homologous members, MAP1LC3A (LC3A), MAP1LC3B (LC3B), and MAP1LC3C (LC3C). The purpose of this study was to determine whether the LC3B isoform plays a specific role in maintaining RPE lipid homeostasis. We examined the RPE and retina of the LC3B-/- mouse as a function of age using in vivo ocular imaging and electroretinography coupled with ex vivo, lipidomic analyses of lipid mediators, assessment of bisretinoids as well as imaging of lipid aggregates. Deletion of LC3B resulted in defects within the RPE including increased phagosome accumulation, decreased fatty acid oxidation and a subsequent increase in RPE and sub-RPE lipid deposits. Age-dependent RPE changes included elevated levels of oxidized cholesterol, deposition of 4-HNE lipid peroxidation products, bisretinoid lipofuscin accumulation, and subretinal migration of microglia, collectively likely contributing to loss of retinal function. These observations are consistent with a critical role for LC3B-dependent processes in the maintenance of normal lipid homeostasis in the aging RPE, and suggest that LC3 isoform specific disruption in autophagic processes contribute to AMD-like pathogenesis. © 2018 Dhingra, Bell, Peachey, Daniele, Reyes-Reveles, Sharp, Jun, Bazan, Sparrow, Kim, Philp and Boesze-Battaglia

    Synthesis and in vivo evaluation of non-hepatotoxic acetaminophen analogs

    Get PDF
    A series of acetaminophen (APAP) analogs, 2-(1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)-N-(4-hydroxyphenyl)alkanecarboxamides, bearing a heterocyclic moiety linked to the p-acylaminophenol fragment, were prepared in a general project to develop APAP analogs with modulated pharmacokinetic profiles. Unexpectedly, the products described maintained the in vivo analgesic profile, while the characteristic hepatotoxicity of APAP was consistently reduced. One of the products, 5a, was studied in vivo in comparison with APAP. Compound 5a displayed an analgesic efficacy comparable to that of APAP. A relatively high acute oral dose of 5a (6 mmol/kg) produced no measurable toxicity, whereas the equimolar dose of APAP increased transaminase activity, depleted hepatic and renal glutathione, and resulted in mortality. In human hepatocytes (HEPG-2) and in human primary cultures of normal liver cells, APAP, but not 5a, was associated with apoptotic cell death, Fas-ligand up-regulation, and CAR (constitutive androstane receptor) activation, contributing to a favorable safety profile of 5a as an orally delivered analgesic.MDA972-03-C-010 (Defense Advanced Research Programs Agency-DARPA)Neurobiotechnology Program of Louisian

    Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke

    Get PDF
    Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke
    • 

    corecore